Overview of the Inertial Confinement Fusion program
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e A brief introduction to Inertial Confinement Fusion

 Improvement neutron yield by the use of diamond ablator

* into the burning plasmaregime
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Fusion combines light nuclei into a heavier nucleus and
releases huge amounts of energy
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The Coulomb barrier makes high temperatures
necessary for DT thermonuclear fusion

Fusion Rate vs. Temperature
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The plasma also needs to be at high enough density and
confined for a long enough time...




There are at least three ways to achieve nuclear

fusion

2

.

Gravitational Magnetic Inertial
Confinement Confinement Confinement
by Laser Implosion
Density 10%x solid solid / 108 103 x solid
Temperature 1 keV 10 keV 10 keV
Confinement time 10° years seconds 10’s ps




The idea of ICF is to compress fuel to thermonuclear

conditions
Ablator High-density
DT shell
35x
convergence
—> ¢
60um
R~ 1000 um R~ 30 um
ppr = 0.25 g/cm? ppr = 700 g/cm?3

pRpr~ 0.03 g/cm? PRpr~ 3 g/cm?



The most efficient compression is spherical

Must exploit R® compression with spheres — R? or R' scaling with cylindrical
or planar compression is not adequate
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In practice, a hollow shell has more surface area and is easier to push with a
given pressure than a solid sphere of the same mass
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Goal: Convert shell kinetic energy to
compression energy to thermal energy _Mul?mp = Egomp = heat
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The most efficient compression is isentropic

From thermodynamics:
dU =Tds — PdV
PdV =Tds —dU

Minimize Minimize
work needed <:> entropy
to compress generation

P-V Diagram
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The most efficient implosion is fast

lon temp. (keV)

Ro
Spot Fju
M

Implosion velocity for Fermi degenerate case
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KE = EMfuew,-zmp ~ (ignition margin)XEpye; = 2Efye

= ~ 3.6x107 cm/s
. M fuel

Ablation pressure to generate implosion velocity
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KE = EM,u,vfmp = Py AV

= Pabl ~100 Mbar




There are at least three ways to achieve nuclear

fusion
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Gravitational Magnetic Inertial
Confinement Confinement Confinement
by Laser Implosion
Density 10%x solid solid / 108 103 x solid
Temperature 1 keV 10 keV 10 keV
Confinement time 10° years seconds 10’s ps
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~600 MJ of electricity is used to generate 1.8MJ/480TW




~1.3MJ of X-rays is generated by the interaction of the
laser with a high Z cavity

Laser pulse

power (TW) and radiation temperature (eV)
N
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Major challenge: laser beam pointing and energy repartition in the hohlraum must

be designed to symmetrically drive the capsule



~150 KJ of energy is absorbed by the 2 mm
diameter low Z capsule

X-ray self-emission image from
a DT implosion at peak
compression

Diameter = 50 um

2 mm




~20 KJ of kinetic energy is reached at peak velocity
of the capsule

Major challenge: The capsule must be designed and driven to withstand hydro
instabilities




In the first experiments we encountered a number of

problems

Fusion Yield (kJ)

60

50

w B
o o

l

N
o

10

T T TTTTTTTTTTTTTTTTTTTTTI
[ ICHLF
[T CH HF
[ IHDC SC

Low-foot

» Significant hydro-instability
— * High-Z mix in hotspot

» LPI and high backscatter

* Hohlraum drive asymmetry

l

}53}355355355%3%33?%3%%3}3}33%%ﬁ%W%%W%*%WW%Wﬁ*%%W%*%W%%W%*%WW%Wﬁ*%%W%

2011 | 2012

7 e

LU



The pulseshape was modified to reduce the capsule
ablation-front growth factors
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In the last six years we’ve focused on addressing

these hohlraum issues

Fusion Yield (kJ)
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* A brief introduction to the Inertial Confinement Fusion program at LLNL
* Improvement neutron yield by the use of diamond ablator

* Into the burning plasma regime
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Having found an optimum in term ablator and hohlraum,

we can now tune the implosion symmetry

VISAR through a “keyhole” target
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Radiographs of imploding shell diagnose symmetry
through convergence ~5x

Laser pulse and
shell trajectory (density)

2D X ray radiography of the convergent Measured shell shape

ablator
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backlit radiographed image
= Measures symmetry of shell as " Symmetry requirement (5 um P2)
implosion progresses maintained in multiple experiments

=  First view of shell symmetry



X-ray emission from final hotspot in gas-filled capsule
demonstrates symmetry control at convergence ~12x
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Symmetry control resulted in high neutron yield at ~ half of A
the laser energy of previous platforms Sl
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Where does the energy go?

Laser
Energy. 1.3 MJ

Into X-rays

the
Hohlraum

12 kJ
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Energy balance in the hot spot

DT
CDTE = faQa — Qe — OB

Assuming isochoric

0>
= 3.1 x 107pVT GJ/(g.5s)

Is the Bremsstrahlung loss term

3.5

Qe =59 X 103@ G]/(gS)

~0.1mm *NR = areal densit )
P y Is the electron conduction term
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Energy balance in the hot spot

Kinetic energy of the shell : 21 KJ
Hot spot energy : %PstagVolume =4.7+1.17 kJ

Alpha deposited energy : 8.7 £ 1.36 kJ
Bremsstrahlung loss: 7 + 2 kJ
Electron conduction loss: 3.4+ 1 kJ

Fusion energy : 57 KJ
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Symmetry control with low gas-fill hohlraums has extended
implosion efficiency and performance in all hot-spot metrics
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Experiments are making progresses, what about the simulations?
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Further improvement of the yield was achieved
By reducing mix in the hot spot
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The latest experiment in August has reached the A
burning plasma regime close to ignition 4
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